Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.01.26.577395

ABSTRACT

Vaccines and first-generation antiviral therapeutics have provided important protection against coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, there remains a need for additional therapeutic options that provide enhanced efficacy and protection against potential viral resistance. The SARS-CoV-2 papain-like protease (PLpro) is one of two essential cysteine proteases involved in viral replication. While inhibitors of the SARS-CoV-2 main protease (Mpro) have demonstrated clinical efficacy, known PLpro inhibitors have to date lacked the inhibitory potency and requisite pharmacokinetics to demonstrate that targeting PLpro translates to in vivo efficacy in a preclinical setting. Herein, we report the machine learning-driven discovery of potent, selective, and orally available SARS-CoV-2 PLpro inhibitors, with lead compound PF-07957472 (4) providing robust efficacy in a mouse-adapted model of COVID-19 infection.


Subject(s)
COVID-19 , Coronavirus Infections
2.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1720472.v2

ABSTRACT

Nirmatrelvir-ritonavir was developed for the treatment of COVID-19 and has shown efficacy in a Phase 2/3 study of high risk patients (EPIC-HR1). Monitoring for the emergence of viral resistance and recurrence of symptoms is a critical component of any antiviral drug development. As part of the study of viral resistance, a sub-analysis was conducted to examine viral load rebound (VLR) following nirmatrelvir-ritonavir treatment in the EPIC-HR study. Nasopharyngeal or nasal swabs were collected from all study participants at Day 1, Day 3, Day 5, Day 10, and Day 14, and analyzed for viral RNA load and next generation viral sequencing. Two categories of viral load rebound were considered including present/persistent and transient. In EPIC-HR, the proportion of present/persistent VLR was low, occurring at 1.73% (17/980) vs 2.32% (23/990) and for transient VLR 2.35% (23/980) vs 4.65% (46/990) in placebo vs nirmatrelvir-ritonavir participants, respectively. VLR occurred in both treatment arms and was not associated with low nirmatrelvir exposure, hospitalization or death, severe symptom relapse, serological status, or Mpro gene/cleavage treatment emergent mutations. In summary, viral load rebounds are likely a phenomena COVID-19 disease course and nirmatrelvir-ritonavir continue to be an important treatment option for high risk COVID-19 patients.


Subject(s)
COVID-19
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.29.486331

ABSTRACT

SARS-CoV-2 continues to represent a global health emergency as a highly transmissible, airborne virus. An important coronaviral drug target for treatment of COVID-19 is the conserved main protease (Mpro). Nirmatrelvir is a potent Mpro inhibitor and the antiviral component of Paxlovid. The significant viral sequencing effort during the ongoing COVID-19 pandemic represented a unique opportunity to assess potential nirmatrelvir escape mutations from emerging variants of SARS-CoV-2. To establish the baseline mutational landscape of Mpro prior to the introduction of Mpro inhibitors, Mpro sequences and its cleavage junction regions were retrieved from ~4,892,000 high-quality SARS-CoV-2 genomes in GISAID. Any mutations identified from comparison to the reference sequence (Wuhan-hu-1) were cataloged and analyzed. Mutations at sites key to nirmatrelvir binding and protease functionality (e.g., dimerization sites) were still rare. Structural comparison of Mpro also showed conservation of key nirmatrelvir contact residues across the extended Coronaviridae family (alpha-, beta-, and gamma-coronaviruses). Additionally, we showed that over time the SARS-CoV-2 Mpro enzyme remained under purifying selection and was highly conserved relative to the spike protein. Now, with the EUA approval of Paxlovid and its expected widespread use across the globe, it is essential to continue large-scale genomic surveillance of SARS-CoV-2 Mpro evolution. This study establishes a robust analysis framework for monitoring emergent mutations in millions of virus isolates, with the goal of identifying potential resistance to present and future SARS-CoV-2 antivirals.


Subject(s)
COVID-19
4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.17.476644

ABSTRACT

New variants of SARS-CoV-2 with potential for enhanced transmission, replication, and immune evasion capabilities continue to emerge causing reduced vaccine efficacy and/or treatment failure. As of January 2021, the WHO has defined five variants of concern (VOC): B.1.1.7 (Alpha, ), B.1.351 (Beta, {beta}), P.1 (Gamma, {gamma}), B.1.617.2 (Delta, {delta}), and B.1.1.529 (Omicron, o). To provide a therapeutic option for the treatment of COVID-19 and variants, Nirmatrelvir, the antiviral component of PAXLOVIDTM, an oral outpatient treatment recently authorized for conditional or emergency use treatment of COVID-19, was developed to inhibit SARS-CoV-2 replication. Nirmatrelvir (PF-07321332) is a specific inhibitor of coronavirus main protease (Mpro, also referred to as 3CLpro), with potent antiviral activity against several human coronaviruses, including SARS-CoV-2, SARS-CoV, and MERS (Owen et al, Science 2021. doi: 10.1126/science.abl4784). Here, we evaluated PF-07321332 against the five SARS-CoV-2 VOC (, {beta}, {gamma}, {delta}, o) and two Variants of Interest or VOI, C.37 ({lambda}) and B.1.621 (), using qRT-PCR in VeroE6 cells lacking the P-glycoprotein (Pgp) multidrug transporter gene (VeroE6 P-gp knockout cells). Nirmatrelvir potently inhibited USA-WA1/2020 strain, and , {beta}, {gamma}, {lambda}, {delta}, , and o variants in VeroE6 P-gp knockout cells with mean EC50 values 38.0 nM, 41.0 nM, 127.2 nM, 24.9 nM, 21.2 nM, 15.9 nM, 25.7 nM and 16.2 nM, respectively. Sequence analysis of the Mpro encoded by the variants showed ~100% identity of active site amino acid sequences, reflecting the essential role of Mpro during viral replication leading to ability of Nirmatrelvir to exhibit potent activity across all the variants.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
5.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.17.476556

ABSTRACT

The COVID-19 pandemic continues to be a public health threat with emerging variants of SARS-CoV-2. Nirmatrelvir (PF-07321332) is a reversible, covalent inhibitor targeting the main protease (Mpro) of SARS-CoV-2 and the active protease inhibitor in PAXLOVID (nirmatrelvir tablets and ritonavir tablets). One of the predominant SARS-CoV-2 variants emerging is the B.1.1.529 Omicron harboring a mutation at amino acid position 132 in the Mpro changing a proline to a histidine (P132H). In vitro biochemical enzymatic assay characterization of the enzyme kinetics of the Omicron Mpro (P132H) demonstrate that it is catalytically comparable to wildtype and that nirmatrelvir has similar potency against both wildtype and Omicron (P132H) Mpro with Ki of 0.933nM (wildtype) and 0.635nM (P132H) each, respectively. This observation is reinforced by our structural determination of nirmatrelvir bound to the omicron Mpro at 1.63[A] resolution. These in vitro data suggest that PAXLOVID has the potential to maintain plasma concentrations of nirmatrelvir many-fold times higher than the amount required tostop the SARS-CoV-2 variant Omicron from replicatingin cells.


Subject(s)
COVID-19
6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.28.21261232

ABSTRACT

The worldwide outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become an established global pandemic. Alongside vaccines, antiviral therapeutics are an important part of the healthcare response to counter the ongoing threat presented by COVID-19. Here, we report the discovery and characterization of PF-07321332, an orally bioavailable SARS-CoV-2 main protease inhibitor with in vitro pan-human coronavirus antiviral activity, and excellent off-target selectivity and in vivo safety profiles. PF-07321332 has demonstrated oral activity in a mouse-adapted SARS-CoV-2 model and has achieved oral plasma concentrations exceeding the in vitro antiviral cell potency, in a phase I clinical trial in healthy human participants. Clinical Trial Registration ID #: NCT04756531


Subject(s)
COVID-19 , Coronavirus Infections
7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.12.293498

ABSTRACT

COVID-19 caused by the SARS-CoV-2 virus has become a global pandemic. 3CL protease is a virally encoded protein that is essential to the viral life cycle across a broad spectrum of coronaviruses with no close human analogs. The designed phosphate prodrug PF-07304814 is metabolized to PF-00835321 which is a potent inhibitor in vitro of the coronavirus family 3CL pro, with selectivity over human host protease targets. Furthermore, PF-00835231 exhibits potent in vitro antiviral activity against SARS-CoV-2 as a single agent and it is additive/synergistic in combination with remdesivir. We present the ADME, safety, and in vitro antiviral activity data to warrant clinical evaluation. One Sentence SummaryThe phosphate prodrug PF-07304814 is disclosed as an investigational novel intravenous small molecule 3CL protease inhibitor for COVID-19.


Subject(s)
COVID-19
8.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.13.295089

ABSTRACT

Advances in Nanopore single-molecule direct RNA sequencing (DRS) have presented the possibility of detecting comprehensive post-transcriptional modifications (PTMs) as an alternative to experimental approaches combined with high-throughput sequencing. It has been shown that the DRS method can detect the change in the raw electric current signal of a PTM; however, the accuracy and reliability still require improvement. Here, we presented a new software, called nanoDoc, for detecting PTMs from DRS data using a deep neural network. Current signal deviations caused by PTMs are analyzed via Deep One-Class Classification with a convolutional neural network. Using a ribosomal RNA dataset, the software archive displayed an area under the curve (AUC) accuracy of 0.96 for the detection of 23 different kinds of modifications in Escherichia coli and Saccharomyces cerevisiae. We also demonstrated a tentative classification of PTMs using unsupervised clustering. Finally, we applied this software to severe acute respiratory syndrome coronavirus 2 data and identified commonly modified sites among three groups. nanoDoc is open source (GPLv3) and available at https://github.com/uedaLabR/nanoDoc

9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.12.294066

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently causing a global pandemic. The antigen specificity and kinetics of the antibody response mounted against this novel virus are not understood in detail. Here, we report that subjects with a more severe SARS-CoV-2 infection exhibit a larger antibody response against the spike and nucleocapsid protein and epitope spreading to subdominant viral antigens, such as open reading frame 8 and non-structural proteins. Subjects with a greater antibody response mounted a larger memory B cell response against the spike, but not the nucleocapsid protein. Additionally, we revealed that antibodies against the spike are still capable of binding the D614G spike mutant and cross-react with the SARS-CoV-1 receptor binding domain. Together, this study reveals that subjects with a more severe SARS-CoV-2 infection exhibit a greater overall antibody response to the spike and nucleocapsid protein and a larger memory B cell response against the spike.


Subject(s)
COVID-19
10.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.11.292581

ABSTRACT

The novel coronavirus SARS-CoV-2 is the causative agent of the acute respiratory disease COVID-19, which has become a global concern due to its rapid spread. Laboratory work with SARS-CoV-2 in a laboratory setting was rated to biosafety level 3 (BSL-3) biocontainment level. However, certain research applications in particular in molecular biology require incomplete denaturation of the proteins, which might cause safety issues handling contaminated samples. In particular, it is critical to provide proof of inactivation before samples can be removed from the BSL-3. In this study, we evaluated common lysis buffers that are used in molecular biological laboratories for their ability to inactivate SARS-CoV-2. We have found that guanidine thiocyanate, SDS, and Triton-X containing lysis buffers were effective in inactivation of SARS-CoV-2, however, the M-PER lysis buffer containing a proprietary detergent failed to inactivate SARS-CoV-2. Furthermore, we compared chemical and non-chemical inactivation methods including ethanol, acetone-methanol mixture, PFA, UV-C light, and heat inactivation. In addition, the stability of the virus in cell culture media at 4{degrees}C and on surfaces used in laboratory environment was analyzed. In conclusion, careful evaluation of the used inactivation methods are required and additional inactivation steps are necessary before removal of lysed viral samples from BSL-3.


Subject(s)
COVID-19 , Respiratory Tract Diseases
11.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.13.276923

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) maintains cardiovascular and renal homeostasis but also serves as the entry receptor for the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2), the causal agent of novel coronavirus disease 2019 (COVID-19)1. COVID-19 disease severity, while highly variable, is typically lower in pediatric patients than adults (particularly the elderly), but increased rates of hospitalizations requiring intensive care are observed in infants than in older children. The reasons for these differences are unknown. To detect potential age-based correlates of disease severity, we measured ACE2 protein expression at the single cell level in human lung tissue specimens from over 100 donors from [~]4 months to 75 years of age. We found that expression of ACE2 in distal lung epithelial cells generally increases with advancing age but exhibits extreme intra- and inter-individual heterogeneity. Notably, we also detected ACE2 expression on neonatal airway epithelial cells and within the lung parenchyma. Similar patterns were found at the transcript level: ACE2 mRNA is expressed in the lung and trachea shortly after birth, downregulated during childhood, and again expressed at high levels in late adulthood in alveolar epithelial cells. Furthermore, we find that apoptosis, which is a natural host defense system against viral infection, is also dynamically regulated during lung maturation, resulting in periods of heightened apoptotic priming and dependence on pro-survival BCL-2 family proteins including MCL-1. Infection of human lung cells with SARS-CoV-2 triggers an unfolded protein stress response and upregulation of the endogenous MCL-1 inhibitor Noxa; in juveniles, MCL-1 inhibition is sufficient to trigger apoptosis in lung epithelial cells - this may limit virion production and inflammatory signaling. Overall, we identify strong and distinct correlates of COVID-19 disease severity across lifespan and advance our understanding of the regulation of ACE2 and cell death programs in the mammalian lung. Furthermore, our work provides the framework for potential translation of apoptosis modulating drugs as novel treatments for COVID-19.


Subject(s)
Adenocarcinoma, Bronchiolo-Alveolar , Severe Acute Respiratory Syndrome , Kidney Diseases , Virus Diseases , COVID-19
12.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.11.294231

ABSTRACT

Emerging clinical data demonstrates that COVID-19, the disease caused by SARS-CoV2, is a syndrome that variably affects nearly every organ system. Indeed, the clinical heterogeneity of COVID-19 ranges from relatively asymptomatic to severe disease with death resultant from multiple constellations of organ failures. In addition to genetics and host characteristics, it is likely that viral dissemination is a key determinant of disease manifestation. Given the complexity of disease expression, one major limitation in current animal models is the ability to capture this clinical heterogeneity due to technical limitations related to murinizing SARS-CoV2 or humanizing mice to render susceptible to infection. Here we describe a murine model of COVID-19 using respiratory infection with the native mouse betacoronavirus MHV-A59. We find that whereas high viral inoculums uniformly led to hypoxemic respiratory failure and death, lethal dose 50% (LD50) inoculums led to a recapitulation of most hallmark clinical features of COVID-19, including lymphocytopenias, heart and liver damage, and autonomic dysfunction. We find that extrapulmonary manifestations are due to viral metastasis and identify a critical role for type-I but not type-III interferons in preventing systemic viral dissemination. Early, but not late treatment with intrapulmonary type-I interferon, as well as convalescent serum, provided significant protection from lethality by limiting viral dissemination. We thus establish a Biosafety Level II model that may be a useful addition to the current pre-clinical animal models of COVID-19 for understanding disease pathogenesis and facilitating therapeutic development for human translation.


Subject(s)
Chemical and Drug Induced Liver Injury , Respiratory Insufficiency , Respiratory Tract Infections , Neoplasm Metastasis , Death , COVID-19 , Lymphopenia
13.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.05.238998

ABSTRACT

This study characterized a genetically adapted Pseudomonas aeruginosa small colony variant isolated from a COVID-19 patient who suffered persistent bacterial coinfection and eventually recovered from critical illness. Specification and modification of the isolates discovered at genomic and transcriptomic levels with aligned phenotypic observations indicated that these isolates formed excessive biofilm with elevated quorum sensing systems.


Subject(s)
COVID-19 , Coinfection
SELECTION OF CITATIONS
SEARCH DETAIL